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Abstract. The aim of this investigation was to develop hydrocortisone butyrate (HB)-loaded poly(D,L-lactic-
co-glycolic acid) (PLGA) nanoparticles (NP) with ideal encapsulation efficiency (EE), particle size, and drug
loading (DL) under emulsion solvent evaporation technique utilizing various experimental statistical design
modules. Experimental designs were used to investigate specific effects of independent variables during
preparation of HB-loaded PLGA NP and corresponding responses in optimizing the formulation. Plackett–
Burman design for independent variables was first conducted to prescreen various formulation and process
variables during the development of NP. Selected primary variables were further optimized by central
composite design. This process leads to an optimum formulation with desired EE, particle size, and DL.
Contour plots and response surface curves display visual diagrammatic relationships between the experimen-
tal responses and input variables. The concentration of PLGA, drug, and polyvinyl alcohol and sonication
timewere the critical factors influencing the responses analyzed.Optimized formulation showedEEof 90.6%,
particle size of 164.3 nm, and DL of 64.35%. This study demonstrates that statistical experimental design
methodology can optimize the formulation and process variables to achieve favorable responses for HB-
loaded NP.

KEY WORDS: central composite design; hydrocortisone butyrate; nanoparticles; Plackett–Burman;
PLGA.

INTRODUCTION

Corticosteroids (or “steroids” for short) are synthetic
derivatives of natural anti-inflammatory hormones secreted
by adrenal glands (1,2). These compounds can relieve inflam-
mation in various cells to prevent release of modified
chemicals that are normally involved in producing immune
and allergic responses, resulting in inflammation (3). The
corticosteroids in ester forms are widely applied as topical
anti-inflammatory agents, e.g., hydrocortisone acetate, and
hydrocortisone butyrate (HB) (4,5). Given their potent anti-
inflammatory activity, these agents are considered to be ther-
apeutic candidates in the treatment of ocular inflammation. In
eye clinics, corticosteroids are widely administered by eye
drops, suspension, creams, and ointment (6,7); 0.1% HB oint-
ment showed no skin and eye irritations in rabbits (8,9).
However, these formulations exhibit low bioavailability and
may cause adverse effects such as glaucoma, transient stinging
or burning, blurred vision, and local irritation (10). Moreover,
the conventional ophthalmic formulations of steroids such as
hydrocortisone and hydrocortisone acetate can only achieve
short-term relief of ocular inflammation, owing to their very
short residence time in the precorneal area. Therefore, steroid

thereby requires frequent administration (11). Alternative
drug delivery systems such as implants and intravitreal injec-
tions may overcome such disadvantages associated with con-
ventional topical delivery systems. However, there is limited
patient compliance because of surgical procedure, discomfort,
and many adverse effects (12,13).

To overcome these limitations, our aim is to develop HB-
loaded biodegradable nanoparticles (NP) which may provide
a sustained release. Poly(D,L-lactic-co-glycolic acid) (PLGA)
has been the most widely applied biodegradable NP for many
years. This polymer is easy to use, biocompatible, biodegrad-
able, and generally nontoxic lactic and glycolic acid in vivo
(14).

PLGA NP can be formulated by emulsion solvent evap-
oration (o/w) technique (15). This well-established method
involves emulsification of water-immiscible organic solvent
containing PLGA polymer into drug in an aqueous surfactant
aqueous solution with steroid under sonication. Removal of
organic solvent under vacuum generates NP. During this
manufacturing process, many parameters such as the concen-
tration of polymer, drug, surfactant, duration and intensity of
sonication, and volume of aqueous phase must be optimized
to obtain HB-loaded NP. It is, therefore, essential to observe
the effects of these preparation variables and their potential
interactions among factors, i.e., physicochemical properties.
However, it is costly and time consuming to assess the impact
of a large number of formulation factors individually. Design
of experiments can be successfully implemented to minimize
the total number of experiments and identify the dominant
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variable effects and interactions (16,17). A screening design
such as Plackett–Burman can initially be selected to determine
the most important parameters among a number of indepen-
dent variables with a limited number of experiments (18,19).
This statistical method, however, neglects the interactions
among the factors (20).

Central composite design (CCD) is a well-known method
involving mathematical modeling and statistical analysis to
evaluate critical variables responsible for optimization of
product quality (21). It consists of imbedded factorial design,
star points for estimation of curvature, and center points for
evaluation of experimental reproducibility (22). It can sig-
nificantly reduce the number of empirical experiments in
determining mathematical trends without sacrificing final
product quality. The method generates a specific mathemat-
ical model that provides information on how the response is
influenced by several variables, which allow the prediction
of optimum level of variable factors required for a given
response.

Therefore, the objective of the present study is to opti-
mize independent variables in order to achieve desired encap-
sulation efficiency (EE), particle size, and drug loading (DL)
for the HB-loaded NP. The objective is also to employ appli-
cation of statistical data to appropriately modify methodolo-
gies in research and/or practice and to incorporate a practical
predictive statistical process including experimental design,
parameter estimation, model predictive control, and statistical
analyses in the production and optimization of formulations.

MATERIALS AND METHODS

Materials

Hydrocortisone 17-butyrate was purchased from Sigma-
Aldrich Co. (St. Louis, MO). High-performance liquid chro-
matography (HPLC)-grade acetonitrile and dichloromethane
were purchased from Fisher Scientific Co. (Fairlawn, NJ).
PLGA copolymer with a monomer ration of 75:25 (Mw
66,000–107,000 Da) and polyvinyl alcohol (PVA; Mw 31,000–
50,000 Da) were obtained from Sigma-Aldrich Co. Double-
distilled deionized (DDI) water was used throughout in
the preparation of formulations and buffers. Ultrapure water
was prepared using a Milli-Q® water purification system
(Millipore Co., Billerica, USA) and filtered (0.22 μm) before
use in mobile phases. All other chemicals in the study were of
analytical reagent grade.

Methods

Preparation of NP

PLGA NP containing HB were prepared by emulsion
solvent evaporation method (23). Briefly, various amounts of
PLGA and HB were dissolved in dichloromethane (5 ml) to
form the organic phase. It was then slowly mixed with an
aqueous solution containing PVA and an oil/water-type emul-
sion was formed upon sonication over an ice bath using a
Fisher Scientific 100 ultrasonic probe. Organic solvent was
removed by stirring at room temperature for 6 h and then
evaporated under a vacuum for 30 min to ensure complete
removal of organic solvents. To remove the unentrapped drug

and PVA, NP suspension was washed with DDI water follow-
ed by centrifugation at 5,000×g (22,000 rpm) for 1 h. This
procedure was repeated for three times. Resulting NP suspen-
sion was freeze-dried over 48 h under a freeze-drier system to
obtain NP in powder form.

Characterization of Physicochemical Properties of NP

1. Entrapment efficiency and DL
For measuring drug entrapment in NP, 1 mg of freeze-

dried material was dissolved in 2 ml of dichloromethane
and vortexed for 1 min to completely solubilize the NP.
Subsequently, the mixture was dried under inert atmo-
sphere (nitrogen gas) and dissolved in 500 μL of acetoni-
trile/water (60:40) by vortexing. After centrifugation at
12,000 rpm for 10 min, the supernatant was aspirated for
analysis of drug concentration by HPLC. Entrapment effi-
ciency and DL were calculated with Eqs. 1 and 2. The
measurements were performed in triplicate.

Entrapment efficiency %ð Þ

¼ Weight of drug in nanoparticles
Initial weight of feeding drug

� 100

ð1Þ

Drug loading %ð Þ

¼ Weight of drug in nanoparticles
Weight of nanoparticles

� 100

ð2Þ

2. Particle size and polydispersity by dynamic light scattering
The average particle size distribution and polydispersity

index (PDI) of freeze-dried NP were characterized by dy-
namic light scattering analyzer (Brookhaven Zeta Plus in-
strument, Holsville, NY). Analyzers were performed in
triplicate.

HPLC Analytical Method

Samples collected were analyzed by HPLC system
(Waters 600 pump, Waters, Milford, MA) equipped with a
fluorescence detector (HP1100, Hewlett Packard, Waldbronn,
Germany). The analysis condition included a Kinetex 2.6 μm
PFP 100 A column (50×2.1 mm ID; Torrance, CA, USA); the
mobile phase comprised a mixture of water (pH 6.5) and aceto-
nitrile (62:38, v/v) and flow rate of 0.6 ml/min at 25°C. The
wavelength of UV detection was 240 nm with a sensitivity
0.0010 AUFS. Fifty microliters of sample volume was injected.
The retention time tR was found to be 7.78 min.

Experimental Design

In this study, the effects of formulation and process pa-
rameters on various response properties were investigated by
experimental designs (24). The independent variables such as
polymers, drug, and surfactant were examined. The concentra-
tion of polymer, drug, and surfactant, the duration and intensity
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of sonication, and the volume of aqueous phase were varied.
The upper and lower limits for individual factors, generating
stable formulation under solvent evaporation technique, were
identified in the preliminary studies (not shown here). The
response considered included EE, particle size, and DL.

Plackett–Burman is a type of screening design initially con-
ducted to identify the significant main factors rather than interac-
tion parameters among the 6 factors (25). In this prescreening
experimental design, a total of eight experiments were carried out
and structured for 6 factors with 2 levels. The experimental design

with input and output values is shown in Table I. Based on
Plackett–Burman design, 4 critical factors were selected as most
important independent variables. In the second step, these
4 critical factors were implemented in CCD to predict the
optimum level and to achieve desirable responses including EE,
particle size, and DL. In this experimental design, 27 different
runs were performed to determine the model coefficients. The
first 16 runs are presented in Table II involving 24 full factorial
design, where 4 corresponds to the number of critical factors,
and 2 to the number of levels for each factor. Eight star points

Table I. The Initial Input Factor Levels and Experimental Responses in Screening Design Plackett–Burman

Run
no.

Input factor levels Experimental response

1 2 3 4 5 6

EE
(%)

Particle
size (nm)

DL
(%; w/w) PDI

PLGA
(mg/ml)

Drug
(mg/ml)

Water
volume (ml)

PVA
(%)

Sonication
power (W)

Sonication
time (min)

1 37.5 3 6 2 45 8 89.4 191 7.15 0.005
2 37.5 9 6 1 75 4 83.8 208.6 20.11 0.021
3 37.5 9 14 1 75 8 81.5 200.3 19.56 0.036
4 12.5 9 14 2 45 4 58.6 192.1 42.19 0.007
5 37.5 3 14 2 45 4 96.2 192.9 7.70 0.082
6 12.5 9 6 2 75 8 49.7 187.9 35.78 0.130
7 12.5 3 14 1 75 8 53.4 198.4 12.82 0.119
8 12.5 3 6 1 45 4 58.8 209.3 14.11 0.104

PLGA poly(D,L-lactic-co-glycolic acid), PVA polyvinyl alcohol, EE encapsulation efficiency, DL drug loading, PDI polydispersity index

Table II. Central Composite Design for Four Factors at Three Different Levels

Run
no.

Input factorial levels

Experimental
design

Experimental response

XA/PLGA
(mg/ml)

XB/drug
(mg/ml)

XC/PVA
(%)

XD/sonication
time (min)

EE
(%)

Particle size
(nm)

DL
(%, w/w) PDI

1 12.5 3 1 4 24 factorial
design

96.61 212.7 23.19 0.072
2 12.5 3 1 8 86.82 151.8 20.84 0.008
3 12.5 3 2 4 96.61 208.2 23.19 0.043
4 12.5 3 2 8 86.83 141.8 20.84 0.006
5 12.5 9 1 4 95.36 209.1 68.66 0.011
6 12.5 9 1 8 85.55 146.1 61.60 0.005
7 12.5 9 2 4 95.56 192.8 68.80 0.005
8 12.5 9 2 8 83.45 142.4 60.08 0.009
9 37.5 3 1 4 96.83 215.1 7.74 0.147
10 37.5 3 1 8 91.88 175.5 7.35 0.006
11 37.5 3 2 4 95.97 208.3 7.68 0.005
12 37.5 3 2 8 91.68 164.7 7.33 0.012
13 37.5 9 1 4 95.55 208.6 22.93 0.007
14 37.5 9 1 8 91.05 177.0 21.85 0.005
15 37.5 9 2 4 95.55 201.1 22.93 0.022
16 37.5 9 2 8 91.25 166.5 21.90 0.009
17 12.5 6 1.5 6 Star design 89.61 160.1 43.01 0.005
18 37.5 6 1.5 6 91.08 167.3 14.57 0.122
19 25 3 1.5 6 92.87 182.5 11.14 0.130
20 25 9 1.5 6 91.02 181 32.77 0.071
21 25 6 1 6 90.35 187.9 21.68 0.094
22 25 6 2 6 91.35 154.5 21.92 0.011
23 25 6 1.5 4 95.87 207.2 23.01 0.008
24 25 6 1.5 8 91.8 177.1 22.03 0.036
25 25 6 1.5 6 Center points

(n=3)
92.35 190.7 22.16 0.005

26 25 6 1.5 6 92.42 191.2 22.18 0.006
27 25 6 1.5 6 92.38 190.3 22.17 0.005

PLGA poly(D,L-lactic-co-glycolic acid), PVA polyvinyl alcohol, EE encapsulation efficiency, DL drug loading, PDI polydispersity index
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(runs, 17–24) with a distance±α (α=1 for face CCD) away from
the center, were added for constructingmore efficient prediction
models of prediction. Three center points (runs, 25–27) were
added for testing experimental reproducibility (25).

Statistical Analysis

In this study, all data are expressed as means±standard
deviation (SD; n=3). Statistical analyses were performed using
SAS software 9.3 version (Cary, NC, USA). The response surface
regression procedure was selected to find the coefficients and to
plot contour and response surface. Analysis of contour and sur-
face plots obtained was used for optimization and determination
of interaction coefficients among various factors (26). A
mathematical expression of experimental designs is repre-
sented in a polynomial equation (Eq. 3):

Y ¼ α0 þ α1X1 þ α2X2 þ α3X3 þ ⋯þ α12X12 þ α13X13

þ α23X23 þ ⋯

ð3Þ

Y is the measured response of EE, particle size, and DL;
α0 indicates a constant representing the mean of dependent
variable obtained in each experiment; αi and αij are the linear
effects of variables Xi and the first-order interactions between
Xi and Xj, respectively; Xi (for i=1, 2, 3, …) represents
independent coded level of variables; Xij (for i,j =1, 2, 3, …,
i< j) is the interaction coefficient between Xi and Xj; αii repre-
sents the quadratic effect of variables Xii. In this polynomial
equation, a positive parameter indicates a synergistic effect,
where the output ascends with an increase in input variables.
Conversely, a negative sign denotes an antagonistic effect
where output descends with elevation in input variables (27).
Two-way analysis of variance (ANOVA) can be applied to
determine statistical significance of each model coefficient,
and least significant difference as post hoc test was performed.
Contour plots and surface response plots are diagrammatic
representation of the values of the response. These plots are
useful to project the magnitude of effects for each variable and
interactions. It can also explain the relationship between in-
dependent variables and dependent responses. The reduced
models were used to plot two-dimensional contour plots and
three-dimensional response surface plots using a SAS soft-
ware. Response surface methodology provides a mathematical
trend that can find optimum level of experimental factors
required for a given response (28). An additional formulation
as the experimental checkpoint was also performed to com-
pare with predicted optimum values.

Table III. ANOVA Results in Screening Design Plackett–Burman for EE, Particle Size, and DL

Source

Experimental response

EE (%) Particle size (nm) DL (%; w/w)

df
Sum of
squares F value P value df

Sum of
squares F value P value df

Sum of
squares F value P value

Model 6 2,312.17 3,082.89 0.0138* 6 455.79 6,752.41 0.0093* 6 1,141.25 58.05 0.1001
1. PLGA (mg/ml) 1 2,125.52 17,004.20 0.0049* 1 3.25 289.00 0.0374* 1 317.32 96.84 0.0645
2. Drug (mg/ml) 1 22.56 180.50 0.0473* 1 0.30 26.89 0.1213 1 425.18 129.76 0.0557
3. Water volume

(ml)
1 8.00 64.00 0.0792 1 21.45 1,906.78 0.0146* 1 3.26 0.99 0.5010

4. PVA (%) 1 7.84 62.72 0.0800 1 207.36 18,432.00 0.0047* 1 24.05 7.34 0.2251
5. Sonication

power (W)
1 3.38 27.04 0.1210 1 3.00 266.78 0.0389* 1 5.46 1.67 0.4197

6. Sonication
time (min)

1 20.70 165.62 0.0494* 1 26.01 2,312.00 0.0132* 1 0.30 0.09 0.8129

Error 1 0.13 1 0.01 1 3.28
Corrected total 7 2,312.30 7 455.80 7 1,144.52

PLGA poly(D,L-lactic-co-glycolic acid), PVA polyvinyl alcohol, EE encapsulation efficiency, DL drug loading, PDI polydispersity index
*α<0.05, significance level

Table IV. The Regression Coefficients in Screening Design Plackett–
Burman for EE, Particle Size, and DL

Coefficient

Experimental response

EE (%)
Particle
size (nm)

DL
(%, w/w)

k0 48.900 233.980 10.383
k1/PLGA (mg/ml) 1.304* 0.051* −0.504
k2/drug (mg/ml) −0.792* 0.092 3.437
k3/water volume (ml) 0.250 −0.409* 0.160
k4/PVA (%) 2.800 −14.400* 4.904
k5/sonication power (W) −0.087 −0.082* −0.110
k6/sonication time (min) −1.138* −1.275* −0.137

PLGA poly(D,L-lactic-co-glycolic acid), PVA polyvinyl alcohol, EE
encapsulation efficiency, DL drug loading, PDI polydispersity index
*α<0.05, significance level

Table V. Identified Critical Factors and Levels Investigated in Central
Composite Design

Critical factors

Transformed levels

−1 0 1

XA/PLGA (mg/ml) 12.5 25 37.5
XB/drug (mg/ml) 3 6 9
XC/PVA (%) 1 1.5 2
XD/sonication time (min) 4 6 8

PLGA poly(D,L-lactic-co-glycolic acid), PVA polyvinyl alcohol
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RESULTS AND DISCUSSION

Screening Experimental Design

A structured experimental design matrix with only eight
experiments was built according to Plackett–Burman design to
prescreen the influence of six parameters at their lowest and

highest factor levels. The input factor conditions and resulting
experimental response data for eight prescreening experimental
runs are shown in Table I. The experimental responses considered
includedEE, particle size, and DL. The model to determine
the response coefficients can be expressed as Eq. 4:

Y ¼ α0 þ α1X1 þ α2X2 þ α3X3 þ α4X4 þ α5X5 þ α6X6 ð4Þ
X1 is the concentration of PLGA (mg/ml); X2 is the

concentration of drug (mg/ml); X3 is volume of water; X4

represents concentration of PVA (percent); X5 is sonication

Table VI. ANOVA Results in Central Composite Design for Entrapment Efficiency (EE), Particle Size, and Drug Loading (DL)

Source

Experimental response

EE (%) Particle size (nm) DL (%; w/w)

df
Sum of
squares F value P value df

Sum of
squares F value P value df

Sum of
squares F value P value

Model 14 316.48 25.79 <0.0001* 14 12,784.75 11.88 <0.0001 14 8,309.95 226.90 <0.0001*
XA 1 33.18 37.86 <0.0001* 1 788.05 10.25 0.0076* 1 3,638.90 1,391.01 <0.0001*
XB 1 7.68 8.77 0.0119* 1 72.00 0.94 0.3523 1 3,534.16 1,350.97 <0.0001*
XC 1 0.17 0.19 0.6673 1 595.13 7.74 0.0166* 1 0.08 0.03 0.8675
XD 1 224.72 256.39 <0.0001* 1 9,809.34 127.56 <0.0001* 1 32.83 12.55 0.0041*
XAB 1 0.99 1.14 0.3076 1 11.73 0.153 0.7030 1 777.99 297.40 <0.0001*
XAC 1 0.07 0.08 0.7880 1 0.08 0 0.9755 1 0.11 0.044 0.8382
XAD 1 34.37 39.21 <0.0001* 1 520.98 6.77 0.0231* 1 19.43 7.43 0.0184*
XBC 1 0.03 0.03 0.8651 1 2.18 0.03 0.8692 1 0.10 0.04 0.8500
XBD 1 0.23 0.26 0.6193 1 59.68 0.78 0.3957 1 9.69 3.70 0.0783
XCD 1 0.13 0.15 0.7092 1 0 0 0.9978 1 0.15 0.06 0.8124
XA

2 1 4.41 5.03 0.0445* 1 461.85 6.01 0.0306* 1 119.10 45.53 <0.0001*
XB

2 1 0.22 0.25 0.6279 1 55.56 0.78 0.4120 1 0 0 0.9773
XC

2 1 1.66 1.90 0.1933 1 89.57 1.16 0.3017 1 0.09 0.03 0.8581
XD

2 1 12.22 13.95 0.0028* 1 582.29 7.57 0.0175* 1 0.74 0.28 0.6050
Error 12 10.52 12 922.79 12 31.39
Corrected total 26 327.00 26 13,707.54 26 8,341.34

Regression analysis
*α<0.05, significance level

Table VII. The Regression Coefficients in Central Composite Design,
P values, R2, and Adjusted R2 for Full Model of Entrapment

Efficiency (EE), Particle Size, and Drug Loading (DL)

Coefficient

Experimental response

EE (%) Particle size (nm) DL (%; w/w)

α0 91.898 181.646 22.046
αA 1.358* 6.617* −14.218*
αB −0.653* −2.000 14.012*
αC −0.097 −5.750* −0.065
αD −3.533* −23.344* −1.351*
αAB 0.249 0.856 −6.973*
αAC 0.064 −0.069 0.084
αAD 1.466* 5.706* 1.102*
αBC −0.041 −0.368 −0.078
αBD −0.119 1.931 −0.778
αCD −0.089 0.006 −0.098
αA

2 −1.310* −13.402* 6.806*
αB

2 0.290 4.648 −0.029
αC

2 −0.805 −5.902 −0.184
αD

2 2.180* 15.048* 0.536
R2 0.9678 0.9327 0.9962

Adjusted R2 0.9303 0.8541 0.9918
CV 1.016 4.821 6.036

*α<0.05, significance level
CV coefficient of variation

Table VIII. The Regression Coefficients in Central Composite De-
sign, P values, R2, and Adjusted R2 for ReducedModel of Entrapment

Efficiency (EE), Particle Size, and Drug Loading (DL) of NP

Coefficient

Experimental response

EE (%) Particle size (nm) DL (%; w/w)

α0 91.829 181.479 22.118
αA 1.358 6.617 −14.218
αB −0.653 14.012
αC −5.750
αD −3.533 −23.344 −1.351
αAB −6.973
αAD 1.466 5.706 1.102
αA

2 −1.515 −13.903 7.021
αD

2 1.975 14.547
F value of model 75.61 35.30 653.93
P value of model <0.0001* <0.0001* <0.0001*
R2 0.9578 0.9137 0.9949
Adjusted R2 0.9451 0.8878 0.9934
CV 0.902 4.227 5.427

*α<0.05, significance level
NP nanoparticles, CV coefficient of variation
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power; and X6 denotes sonication time (minutes) in coded
values. Each experimental response Y can be represented by
an individual quadratic equation.

Analysis of data was carried out by ANOVA, and the
individual parameter was evaluated with F test as shown in
Table III. The corresponding regression coefficients were sum-
marized in Table IV. The results from Table III indicate that
concentration of PLGA and drug and the sonication time exert
significant effects on EE. As expected, an addition of more
PLGA enhanced EE, whereas an increase in drug and sonica-
tion time led to lower EE (Table IV). In addition, the particle
size diminished with rise in several factors including PVA, in-
tensity, and duration of sonication. However, PLGA produced a
significant synergistic effect on particle size (Table IV). None of
the factors appeared to exert significant influence on DL by
prescreening experimental design shown in Table III.
Therefore, four critical factors including PLGA, drug and PVA
levels, and sonication time were first selected by Plackett–
Burman design. It was further optimized by another experimen-
tal design for obtaining desirable responses (Table V).

The screening design Plackett–Burman only evaluates
the effects of individual variables but not the interactions
between variables and their impact on each response (29).
However, this step is necessary to simplify various variables.
It also enables us to further focus on more detailed examina-
tion and optimization of several critical factors.

Central Composite Design

CCD can provideminimal experimental runs to investigate all
the effects and interactions between the four experimental factors
from prescreening study (30). In this study, all the models of CCD
permit to find optimal operating conditions with high EE, small
particle size, and great DL, which can be controlled by adjusting

different variables. The matrix of the CCD and resulting experi-
mental responses are provided in Table II. The results of the
experimental design are analyzed with SAS software,
which can provide considerable useful information and
confirm the utility of statistical design in conducting ex-
periments. The ANOVA results and regression coefficients
for each response based on 27 runs in this design are
summarized in Tables VI and VII, respectively. The fol-
lowing quadratic model is carried out to fit the data:

Y ¼ α0 þ αAXA þ αBXB þ αcXc þ αdXd þ αABXAB þ αACXAC

þ αADXAD þ αBCXBC þ αBDXBD þ αCDXCD þ αA2X2
A

þ αB2X2
B þ αC2X2

C þ αD2X2
D

ð5Þ
XA is the concentration of PLGA (milligrams per milliliter);

XB denotes the concentration of drug (milligrams per milliliter);
XC represents concentration of PVA (percent); and XD is soni-
cation time (minutes) in coded values. Each experimental re-
sponseY can be represented by an individual quadratic equation.

Effect of Formulation Variable on EE

The full model for Y1 (EE %) is given by Eq. 6.

Y1 EE%ð Þ ¼ 91:898þ 1:358XA−0:653XB−0:097XC−3:533XD

þ 0:249XAB þ 0:064XAC þ 1:466XAD−0:041XBC

−0:119XBD−0:089XCD−1:310X2
A þ 0:290X2

B

−0:805X2
C þ 2:180X2

D

ð6Þ

with R2=0.9678, adjusted R2=0.9303, and CV=1.016
The model coefficients estimated by quadratic model for EE

are given in Table VII. The regression coefficients with

Fig. 1. Main effects plot for EE, particle size, and DL of NP
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AB EEa

Fig. 2. Contour plots and response surface plots of EE of NP. a XA and XB, XC=1.5, and
XD=6; b XA and XD, XB=6, and XC=1.5; and c XB and XD, XA=25, and XC=1.5
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AD EE *b

Fig. 2. (continued)
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BD EEc

Fig. 2. (continued)

577Statistical Design for Formulation Optimization



AC SIZEa

Fig. 3. Contour plots and response surface plots of particle size of NP. a XA and XC, XB=6,
and XD=6; b XA and XD, XB=6, and XC=1.5; and c XC and XD, XA=25, and XB=6
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P value<0.05 are highly significant, whereas the terms having
nonsignificant response coefficients with a P value>0.05 are least

contributing in the prediction of EE and hence are removed from
the full model to generate the reduced model equation.

AD SIZE*b

Fig. 3. (continued)
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CD SIZEc

Fig. 3. (continued)
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AB DL*a

Fig. 4. Contour plots and response surface plots of DL of NP. a XA and XB, XC=1.5, and
XD=6; b XA and XD, XB=6, and XC=1.5; and c XB and XD, XA=25, and XC=1.5
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AD DL *b

Fig. 4. (continued)
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BD DLc

Fig. 4. (continued)
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The following polynomial equation indicates the reduced
model having significant coefficients for Y1 (EE %).

Y1 EE %ð Þ ¼ 91:829þ 1:358XA−0:653XB−3:533XD

þ 1:466XAD−1:515X2
A þ 1:975X2

D

ð7Þ

with R2=0.9578, adjusted R2=0.9451, and CV=0.902
In Eq. 7, the quadratic model is found to be signifi-

cant with an F value of 25.79 (P value<0.0001), which
indicates that response Y1 and the set of X variables are
significantly related (Table VI). F value of the reduced
model is 75.61 with a very low probability value (P value
<0.0001), demonstrating that the reduced model is also
highly significant. The determination coefficient (R2) of
full model is 0.9678, higher than R2 of 0.9578 in reduced
model, because R2 value is always higher by adding a
variable to the model, regardless of whether the
additional variable is significant or not (31). A high R2

value indicates that 96.78% of variation in EE was explained by
the regression of preparation variables. However, a large value
of R2 is not necessary to confirm the good fit for the regression
model. In such cases, the adjusted R2 value can be selected to
evaluate the good fit of the model. Removal of nonsignificant
terms increases the adjusted R2 value (32). The adjusted R2

value (0.9451) in reduced model for EE is higher than that
(0.9303) in the full model. This result indicates that reduced
model fits the observed data quite well. Compared with the
full model, the results for reduced model showed that R2 value
is as high as the adjusted R2 value, which indicates a higher
significance of the reduced model (Table VIII) (33). In
addition, the value of the CV (0.902) is relatively low,
indicating improved precision and reliability of the
experiments (34).

It is obvious that the concentration of PLGA, drug,
and sonication time are the main factors with significant
effects on the EE of NP as shown in Fig. 1. The plots
also indicated the synergistic effect of PLGA and an-
tagonistic effects of drug and sonication time. The con-
tour plots and response surface curves for EE as a
function of preparation factors are constructed by fixing
two of the variables (Fig. 2). This gives a diagrammatic
representation of relationship between the experimental
responses and input variables. As shown in Fig. 2, EE
changes sharply by varying PLGA and sonication time.
As we expected, a polymer concentration increase led to
a concentration-dependent increase in EE, whereas the
sonication time decreased the EE. However, a higher
level of interactions between PLGA and sonication time
shows a higher EE of NP. A significant (P value<0.0001)
synergistic interaction between PLGA and sonication time
are found (Tables VI and VII), which matched the pattern
of interaction depicted in plots and there is no significant
interaction between other variables for EE. The quadratic
regression coefficients αA2 and αD2 are statistically sig-
nificant. The quadratic effect of sonication time shows
significant (P value=0.0028) synergistic influence on EE
of NP. A significant (P value=0.0445) antagonistic influ-
ence of quadratic effect of PLGA on EE is evident
(Tables VI and VII).

Effect of Formulation Variable on Particle Size

The full model for Y2 (particle size) is given by Eq. 8.

Y2 Particle sizeð Þ ¼ 181:646þ 6:617XA−2:000XB−5:750XC−23:344XD

þ 0:856XAB−0:069XAC þ 5:706XAD−0:368XBC

þ 1:931XBD þ 0:006XCD−13:402X2
A þ 4:648X2

B

−5:902X2
C þ 15:048X2

D

ð8Þ

with R2=0.9327, adjusted R2=0.8541, and CV=4.821
The model coefficients estimated by quadratic model is

depicted in Table VII. The following polynomial in Eq. 9
indicates the reduced model by removal of nonsignificant
response coefficients with P value>0.05 for Y2 (particle size).

Y2 Particle sizeð Þ ¼ 181:479þ 6:617XA−5:750XC−23:344XD

þ 5:706XAD−13:903X2
A þþ14:547X2

D

ð9Þ

with R2=0.9137, adjusted R2=0.8878, and CV=4.227
For the particle size, the model F value of 11.88 with a

very low probability value (P value<0.0001) implies a very
high significance for the full regression model (Table VI).
Model F value of the reduced model is 35.30 with a very low
probability value (P value<0.0001), demonstrating that the
reduced model is also highly significant. R2 values of full and
reduced models are 0.9327 and 0.9137, respectively, indicating
excellent correlation between the independent variables in
both models. The adjusted R2 values of full and reduced
models were 0.8541 and 0.8878, respectively, indicating that
the reduced model with higher significance is a better model
for fitting (Table VIII). At the same time, a relatively low
value of CV (4.227) in the reduced model has greater
precision and reliability of the conducted experiments,
compared with CV (4.821) in full model.

The results in Table VI show that particle size is highly
dependent on the concentration of PLGA, PVA, and sonica-
tion time. Figure 1 demonstrates an increasing effect of PLGA
but a lowering effect of PVA and sonication time. The possible
interactions between these factors for particle size were also
investigated. This is reflected by pattern of the contour lines
and response surface curves in Fig. 3. A significant (P value=
0.0231) synergistic interaction between PLGA and sonication
time were also found for particle size however no such inter-
actions between other variables are significant for particle
size. The quadratic regression coefficients αA2 and αD2

are statistically significant. The quadratic effect of sonica-
tion time also suggest significant (P value=0.0175) syner-
gistic influence on the particle size of NP. A significant (P

Table IX. Comparison Between the Model Constant and the Average
Experimental Results in the Center of the Domain (n=3)

Coefficient

Experimental response

EE (%) Particle size (nm) DL (%; w/w)

α0 91.898 181.646 22.046
Average result 92.38 190.73 22.17
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Fig. 5. Overlaid contour plots of NP with independent variables. a XA and XD, XB=6,
and XC=1.5 and b XC=1.5 and XD=6
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value=0.0306) antagonistic quadratic effect of PLGA on
the particle size was observed.

Effect of Formulation Variable on DL

The full model for Y3 (DL) is given by Eq. 10.

Y3 DLð Þ ¼ 22:046−14:218XA þ 14:012XB−0:065XC−1:351XD−6:973XAB

þ 0:084XAC þ 1:102XAD−0:078XBC−0:778XBD−0:098XCD

þ 6:806X2
A−0:029X

2
B−0:184X

2
C þ 0:536X2

D

ð10Þ

with R2=0.9962, adjusted R2=0.9918, and CV=6.036
The model coefficients estimated by quadratic model for

DL are shown in Table VII. The following polynomial Eq. 11
indicates the reduced model for Y3 (DL).

Y3 DLð Þ ¼ 22:118−14:218XA þ 14:012XB−1:351XD−6:973XAB

þ 1:102XAD þ 7:021X2
A

ð11Þ

with R2=0.9949, adjusted R2=0.9934, and CV=5.427
In full and reduced regression models for DL, model F

values are 226.90 and 653.93, respectively, implying that both
models are highly significant with P values less than 0.0001 as
shown in Table VI. In both models, R2 values (0.9962 and
0.9949, respectively) and adjusted R2 values (0.9918 and
0.9934, respectively) are high (>0.99), indicating an excellent
correlation between independent variables and good fit for
the regression model (Tables VII and VIII). Since, adjusted R2

values are improved with a relatively low value of CV (5.427).
It was obtained by omitting the terms with P value>0.05.
Therefore, a reduced model is chosen for DL.

In the reduced model of DL, the PLGA, drug, and son-
ication time exhibit significant effect (Table VI). The main
effect plots in Fig. 1 illustrate the increasing effect of drug
and decreasing effect of PLGA and sonication time. In the
contour plot and surface response plots for DL, interaction
between PLGA and drug and that between PLGA and soni-
cation are depicted in Fig. 4. DL changed significantly by
varying concentration of PLGA. However, such change came
in a relatively gradual fashion as viewed from the drug axis or
sonication time axis. This result indicates that the PLGA is the
most important factor for interaction effect on DL. It is con-
cluded that interaction between PLGA and sonication has a
synergistic effect on DL where more interactions lead to
higher DL. By contrast, higher interactions between PLGA
and drug caused an antagonistic effect on DL, resulting in
lower DL. No significant interactions between other variables
were found. The quadratic regression coefficient αA2 is statis-
tically significant. The quadratic effect of PLGA also shows
significant (P value<0.0001) synergistic influence on DL of
NP.

Optimization of Formulation

The three center-point experiments resulted in minor
differences between model constants and average results for
EE and DL (Table IX). However, a significant difference
between the model constants and the average results for par-
ticle size was observed, indicating that the calculated model

does not always generate good prediction of responses every-
where in the experimental domain.

The qualitative and quantitative influence of independent
factors on responses of EE, particle size, and DL may clearly
be interpreted from the aforement ioned models .
Consequently, they may be further used for selection of opti-
mized formulation by SAS software, which offers to vary each
variable simultaneously and allows to develop possible opti-
mum selections with their respective desirability value. A lack
of adequate fit of models will cause poor or misleading results
to the continuing examination and optimization of the fitted
response surface. The residual analysis is one method to check
model adequacy. By constructing a normal probability plot of
the residuals form the least square fit, the normality can be
confirmed (35). In this study, the normality is satisfactory as all
residual plots are distributed along a straight line. This means
the confidences for the fitness of the regression equations to
the observed values are more than 95% for all responses.

The canonical analysis in the SAS software is a mathe-
matical tool for simplifying a second-order polynomial model
and simultaneously observing the extreme values of several
response surface models. Overlaid contour plots of NP with
independent variables were constructed by fixing two of the
variables. The plots demonstrated a trend of optimum level
for 4 factors (Fig. 5). According to our criteria for higher EE,
lower particle size, and higher DL, the optimized PLGA, drug,
PVA, and sonication time under canonical analysis were se-
lected at 12.5 mg/ml, 9 mg/ml, 1.8%, and 5.6 min, respectively.
EE, particle size, and DL of optimized formulation were
predicted to be 89.38%, 163.9 nm, and 64.83%, respectively
(Table X). An extra design checkpoint formulation under
optimized factors was performed to compare with the predict-
ed values. As shown in Table X, the bias were around −1.37%,
−0.24%, and 0.73% for each respective response, indicating
the validity of generated models with no statistically signifi-
cant difference and good correlation between predicted and
experimental values.

CONCLUSIONS

In this study, experimental designs were involved to in-
vestigate the effects of formulation and process variables on
the resulting EE, particle size, and DL. The Plackett–Burman
as a prescreening design allowed to select critical factors from
various variables. The application of CCD proved to be a
useful tool for optimizing HB-loaded PLGA NP prepared by
emulsion solvent evaporation technique. An analysis of these
results was processed by polynomial equations and multiple
regression. These results of statistical analysis demonstrate

Table X. Comparison of the Observed and Predicted Values of the
Response Variables of Optimized Formulation

Experimental
response

Predicted
values

Experimental
values

Bias*
(%)

EE (%) 89.38 90.60 −1.37
Particle size (nm) 163.9 164.3 −0.24
DL (%; w/w) 64.83 64.35 0.73

Bias was calculated as (predicted observed value)/predicted value×
100%
*α<0.05, significance level
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that concentration of PLGA and drug and sonication time
appear to be the crucial parameters for the EE and DL,
whereas concentration of PLGA, sonication power, and time
are important for the particle size. According to our studied
factors, the selected optimum formulation with 90.6% of EE,
164.3 nm of particle size with PDI of 0.005, and 64.35% of DL
was processed by 12.5 mg/ml of PLGA, 9 mg/ml of drug, 1.8%
of PVA, and 5.6 min of sonication time. Observed response is
in close agreement with the predicted values of the optimized
formulation. Therefore, the statistical experimental design
methodology has clearly shown the feasibility of the optimiza-
tion procedure in developing HB-loaded NP.
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